134 research outputs found

    Barium study associated with water siphon test in gastroesophageal reflux disease and its complications.

    Get PDF
    PURPOSE: The aim of this study was to evaluate the role of digital cineradiography associated with the water siphon test (WST) in the diagnosis of gastroesophageal reflux and to compare the results with oesophageal motility study, pH monitoring and endoscopy associated with biopsy and histology. MATERIALS AND METHODS: One hundred and sixty consecutive patients underwent digital cineradiography with WST, motility study, pH monitoring and endoscopy with biopsy. The presence of gastroesophageal reflux, oesophagitis, Barrett''s oesophagus and intestinal metaplasia was evaluated. RESULTS: WST vs. pH monitoring showed sensitivity of 71%, specificity of 31%, positive predictive value (PPV) of 53% and negative predictive value (NPV) of 50%; when middle-proximal refluxes only were considered, sensitivity decreased to 45% and specificity increased to 55%. Furthermore, the association between reflux and oesophagitis demonstrated by the chi-square (chi(2)) test proved to be statistically significant both for WST and pH monitoring, whereas the association between reflux and Barrett''s oesophagus was not significant for either WST or for pH monitoring. With regard to intestinal metaplasia, WST (middle-proximal refluxes) showed higher sensitivity (64% vs. 58%) and specificity (63% vs. 51%) than pH monitoring, whereas the statistical association between reflux and metaplasia proved to be significant for WST but not for pH monitoring. CONCLUSIONS: WST is a simple, inexpensive and reliable test that might be useful in the diagnosis of gastroesophageal reflux disease (GERD). A positive WST might be an additional indication for endoscopy with biopsy

    Architecture and performance of the KM3NeT front-end firmware

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain.The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine.French National Research Agency (ANR) ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)Commission Europeenne (FEDER fund), FranceCommission Europeenne (Marie Curie Program), FranceInstitut Universitaire de France (IUF), FranceLabEx UnivEarthS, France ANR-10-LABX-0023 ANR-18-IDEX-0001Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN) NAT-NET 2017W4HA7SMinistry of Education, Universities and Research (MIUR) NAT-NET 2017W4HA7SPRIN 2017 program Italy NAT-NET 2017W4HA7SMinistry of Higher Education Scientific Research and Professional Training, ICTP, Morocco AF-13Netherlands Organization for Scientific Research (NWO) Netherlands GovernmentNational Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (MCIU/FEDER), Spain PGC2018-096663-B-C41 PGC2018-096663-A-C42 PGC2018-096663-B-C43 PGC2018-096663-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), SpainJunta de Andalucia European Commission SOMM17/6104/UGRGeneralitat Valenciana: Grisolia program, Spain GRISOLIA/2018/119Generalitat Valenciana: GenT program, Spain CIDEGENT/2018/034La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program, Spain 71367

    Architecture and performance of the KM3NeT front-end firmware

    Full text link
    [EN] The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machineThe authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain.Aiello, S.; Albert, A.; Alves Garre, S.; Aly, Z.; Ameli, F.; Andre, M.; Androulakis, G.... (2021). Architecture and performance of the KM3NeT front-end firmware. Journal of Astronomical Telescopes, Instruments, and Systems. 7(1):1-24. https://doi.org/10.1117/1.JATIS.7.1.016001S1247

    Identification of novel 2-(1H-Indol-1-yl)benzohydrazides CXCR4 ligands impairing breast cancer growth and motility

    Get PDF
    Stromal-derived-factor-1 (SDF-1) and the G-protein-coupled receptor CXCR4 are involved in several physiological and pathological processes including breast cancer spread and progression. Several CXCR4 antagonists have currently reached advanced development stages as potential therapeutic agents for different diseases. Results: A small series of novel CXCR4 ligands, based on a 2-(1H-indol-1-yl)-benzohydrazide scaffold, has been designed and synthesized. The interaction with CXCR4-active site was predicted by molecular docking and confirmed by whole cell-based [125I]-SDF-1 ligand competition binding assays. One of the synthesized compounds was particularly active in blocking SDF-1-induced breast cancer cell motility, proliferation and downstream signaling activation in different breast cancer cell models and coculture systems. Conclusion: The newly synthesized compounds represent suitable leads for the development of innovative therapeutic agents targeting CXCR

    A new multianodic large area photomultiplier to be used in underwater neutrino detectors

    Get PDF
    In this article we describe the properties of a new 10-in. hemispherical photomultiplier manufactured by Hamamatsu. The prototype has a segmented photocathode and four independent amplification stages. The photomultiplier is one of the main components of a newly designed direction-sensitive optical module to be employed in large-scale underwater neutrino telescopes. The R&D activity has been co-funded by the INFN and the KM3NeT Consortium. The prototype performance fully meets with the design specifications

    First observation of the cosmic ray shadow of the Moon and the Sun with KM3NeT/ORCA

    Get PDF
    This article reports the first observation of the Moon and the Sun shadows in the sky distribution of cosmic-ray induced muons measured by the KM3NeT/ORCA detector. The analysed data-taking period spans from February 2020 to November 2021, when the detector had 6 Detection Units deployed at the bottom of the Mediterranean Sea, each composed of 18 Digital Optical Modules. The shadows induced by the Moon and the Sun were detected at their nominal position with a statistical significance of 4.2 σ and 6.2 σ , and an angular resolution of σres= 0. 49 ∘ and σres= 0. 66 ∘ , respectively, consistent with the prediction of 0. 53 ∘ from simulations. This early result confirms the effectiveness of the detector calibration, in time, position and orientation and the accuracy of the event direction reconstruction. This also demonstrates the performance and the competitiveness of the detector in terms of pointing accuracy and angular resolution

    Covid-19 And Rheumatic Autoimmune Systemic Diseases: Role of Pre-Existing Lung Involvement and Ongoing Treatments

    Get PDF
    The Covid-19 pandemic may have a deleterious impact on patients with autoimmune systemic diseases (ASD) due to their deep immune-system alterations

    Architecture and performance of the KM3NeT front-end firmware

    Get PDF
    The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine

    Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. Thanks to the tight requirements on its optical and radio-purity properties, it will be able to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range from tens of keV to hundreds of MeV. A key requirement for the success of the experiment is an unprecedented 3% energy resolution, guaranteed by its large active mass (20 kton) and the use of more than 20,000 20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution sampling electronics located very close to the PMTs. As the Front-End and Read-Out electronics is expected to continuously run underwater for 30 years, a reliable readout acquisition system capable of handling the timestamped data stream coming from the Large-PMTs and permitting to simultaneously monitor and operate remotely the inaccessible electronics had to be developed. In this contribution, the firmware and hardware implementation of the IPbus based readout protocol will be presented, together with the performances measured on final modules during the mass production of the electronics
    corecore